Industry publication Radiology Business says:
Cold cathode X-ray tubes have the possibility of revolutionizing medical imaging and reducing costs and weight of current X-ray based imaging systems. There have been a lot of engineering issues that needed to be overcome, but vendor Micro-X at RSNA 2022 said they have solved the issue of tubes wearing out, and they displayed an FDA-cleared mobile digital X-ray system on the floor. The company also showed a miniature head CT scanner using the same carbon nanotube cold cathode X-ray technology, which is already being deployed in Australia.
The Rover mobile DR system uses carbon nanotubes to create a beam of electrons in the tube that hit a metal target to create X-rays. Conventional tubes used over the last century use a light-bulb like filament that produces more heat than electron beam or X-rays, so systems need passive and active cooling systems. The weight of these systems and conventional tubes requires heavy structural support and motorized systems because of the weight. But these cold cathode systems are only a faction of the weight because they are made with minimal metal and carbon lightweight materials. The Rover is 220 pounds (100 kg), so it can easily be pushed without a motorized drive system.
Industry publication Radiology Business says:
Cold cathode X-ray tubes have the possibility of revolutionizing medical imaging and reducing costs and weight of current X-ray based imaging systems. There have been a lot of engineering issues that needed to be overcome, but vendor Micro-X at RSNA 2022 said they have solved the issue of tubes wearing out, and they displayed an FDA-cleared mobile digital X-ray system on the floor. The company also showed a miniature head CT scanner using the same carbon nanotube cold cathode X-ray technology, which is already being deployed in Australia.
The Rover mobile DR system uses carbon nanotubes to create a beam of electrons in the tube that hit a metal target to create X-rays. Conventional tubes used over the last century use a light-bulb like filament that produces more heat than electron beam or X-rays, so systems need passive and active cooling systems. The weight of these systems and conventional tubes requires heavy structural support and motorized systems because of the weight. But these cold cathode systems are only a faction of the weight because they are made with minimal metal and carbon lightweight materials. The Rover is 220 pounds (100 kg), so it can easily be pushed without a motorized drive system.
Discover how the Micro-X Rover, a revolutionary portable X-ray system, is making its debut at the NCAA Final Four in San Antonio. Learn how it’s transforming sports medicine by delivering hospital-quality imaging directly to athletes.
From expanding the reach of our lightweight mobile X-ray solutions to progressing our game-changing CT imaging technology, 2025 will be about commercial success and delivering benefits to patients and clinicians globally.
See the presentation given by Chief Operating Officer Anthony Skeats to medical radiation professionals from across Australia and New Zealand on the development of miniaturised CT for stroke detection that can be retrofitted into a standard air or road ambulance.
Micro-X creates revolutionary X-ray technology to better lives.
Our PurposeFind out how Micro-X is creating new opportunities for industries across the world.
Find out moreThey’re the visionaries and innovators behind our X-ray technology, products, culture and ethos.
Meet the team